A Guide to Biotechnology Law and Business

A Guide to Biotechnology Law and Business

Robert A. Bohrer California Western School of Law

CAROLINA ACADEMIC PRESS

Durham, North Carolina

Copyright © 2007 Robert A. Bohrer All Rights Reserved.

Library of Congress Cataloging-in-Publication Data

Bohrer, Robert A.

A guide to biotechnology law and business / by Robert A. Bohrer. p. cm.

Includes bibliographical references and index.

ISBN-13: 978-1-59460-087-6 (alk. paper)

ISBN-10: 1-59460-087-2 (alk. paper)

1. Biotechnology industries--Law and legislation--United States.

2. Biotechnology--Law and legislation--United States. I. Title.

KF3133.B56B64 2007 343.73'0786606--dc22

2007005410

Carolina Academic Press 700 Kent Street Durham, North Carolina 27701 Telephone (919) 489-7486 Fax (919) 493-5668 www.cap-press.com

Printed in the United States of America.

For My Parents Ira Bohrer of Blessed Memory and Charlotte Bohrer Who Shared Their Love of Learning With Me

And

To the Memory of Vince Frank, Who Would Have Coauthored This Book

Contents

Table of Cases	xvii
Acknowledgments	xix
Chapter 1 An Introduction to Biotechnology Law and Business	3
\$1.0 Biotechnology: Infinite Promise and Infinitely Challenging	3
\$1.1 The Purpose of This Book	4
\$1.1(A) An Overview of This Book	4
\$1.2 What is Biotechnology?	5
\$1.2(A) The Scope of the Biotechnology Industry	6
\$1.2(B) Applications of Biotechnology: Human Health	7
\$1.2(B)(1) Human Therapeutics	8
\$1.2(B)(2) Diagnostics for Human Disease	11
\$1.2(B)(3) Vaccines	12
\$1.2(C) Applications of Biotechnology: Agriculture	12
\$1.2(D) Industrial Applications of Biotechnology	13
\$1.3 Summary: The Life Cycle of Biotechnology and the Lawyer's	
Role	14
Chapter 2 A Primer on the Basic Science and Applications of	
Biotechnology	19
\$2.0 Modern Molecular Biology and Immunology	19
\$2.1 DNA and the Genetic Code	19
\$2.1(A) From DNA to RNA to Protein: The Central Dogma of	
Molecular Biology (Now Known to be False!)	20
\$2.1(B) Genes: The Recipe for a Protein	21
\$2.1(C) Genes, Proteins, and Splice Variants	21
\$2.1(D) Putting It All Together: Genomes, Genotypes, and	
Phenotypes	22
\$2.2 Prokaryotes, Eukaryotes, and Viruses	23
§2.2(A) Viruses	24
§2.2(B) Bacteria (Prokaryotes)	24

\$2.2(C) Eukaryotes	25
\$2.3 Introductory Genetic Engineering for Beginning Non-Biologists	25
§2.3(A) Gel Electrophoresis	26
§2.3(B) DNA Sequencing	27
\$2.3(C) Cloning Genes	28
\$2.3(D) Polymerase Chain Reaction	29
\$2.4 An Introduction to Immunology (and Monoclonal Antibodies)	29
\$2.5 Applications of Genetic Engineering in Health Care	34
§2.5(A) Genetically Engineered Vaccines	34
§2.5(B) Diagnostic Gene Probes	35
§2.5(C) Therapeutic Applications of Genetic Engineering	36
\$2.5(D) Genetic Engineering and Human Gene Therapy	38
\$2.6 Applications of Monoclonal Antibody Technology in Health	
Care	40
§2.6(A) Therapeutic Uses of Monoclonal Antibodies	41
\$2.7 Genetic Engineering Applications in Agriculture and Industry	42
\$2.8 Summary	43
Chapter 3 Technology Transfer: The University-Industry Connection \$3.0 Introduction: Universities and Research Institutes—Where	45
Biotechnology Is Born	45
\$3.1 An Introduction to the Bayh-Dole Act: Transfer of Technology	10
Developed with Federal Research Funding	46
\$3.2 The Requirements of Bavh-Dole for Universities	48
\$3.2(A) Assignment of Rights	48
\$3.2(B) Sharing Proceeds	50
\$3.3 The University Office of Technology Transfer (OTT):	
Functions and Models	51
\$3.3(A) Disclosure	51
\$3.3(B) Evaluation	52
§3.3(C) Marketing	53
\$3.3(D) Licensing	55
\$3.3(E) Monitoring and Enforcement	55
\$3.4 Alternative Models of Technology Transfer: Scripps, the NIH	
Guidelines, and Post-NIH Guidelines Developments	56
§3.4(A) The Scripps Research Institute (TSRI) Significant	
Relationship Model	56
\$3.4(B) The NIH Guidelines: Developing Sponsored Research	
Agreements: Considerations for Recipients of NIH	

Research Grants (59 FR 32997-02, Monday, June 27,	
1994) ("NIH Sponsored Research Guidelines")	58
\$3.5 Licensing a University Invention (Also a Few Tips on	
Negotiation)	60
§3.5(A) Licensed Technology	62
\$3.5(B) Sublicensing	63
\$3.5(C) Field of Use, Geographic Territory, and Exclusive	
Versus Non-Exclusive	64
\$3.5(D) Royalties, Licensing Fees, and Milestone Payments	66
\$3.5(E) The Bottom Line on University Licensing	67
\$3.6 Sponsored Research Agreements	67
\$3.6(A) The Description of the Research	67
\$3.6(B) Time for Review before Publication	68
\$3.6(C) Sponsor's Rights to Inventions Resulting from the	
Sponsored Research	68
\$3.7 Conclusion: University Technology and Biotechnology	69
Chapter 4 Intellectual Property (IP) Protection for Biotechnology	71
\$4.0 Introduction: The Need for Patents and the Patentability of	- 1
Biotechnology	71
\$4.1 Patents and Trade Secrets: Choosing a Method for Protection	73
\$4.2 Differences Between U.S. and Foreign Patent Law	/5
\$4.3 Patentable Subject Matter	77
\$4.4 New and Useful: The Requirement of Utility	80
\$4.5 Novelty and Publication	82
\$4.6 Nonobviousness	84
§4.6(A) Secondary Evidence of Nonobviousness	88
\$4.7 Written Description, Enablement, and Best Mode: The	0.0
Requirements of §112	89
\$4.8 Other Special Problems for Biotechnology Patents	93
94.8(A) Protection from Foreign Competition	95
§4.8(B) Biotechnology Products Derived from Human Tissue	95
94.8(C) Patent Protection for Stem Cell Research and	06
64.0 Piotochnology Detents: Morel and Ethical Jacuas	90
54.9 biotechnology Patents: Moral and Effical Issues	97
y4.7(A) The rights of indigenous reoples	7/
Remedies	00
ICHICUIC5	22

§4.9(C) Patenting Animals: Beyond Patentable Subject Matter to	
Agricultural Policy and Animal Rights	99
\$4.10 Broad Patent Claims to Drug Targets	100
\$4.11 Patent Infringement and the Doctrine of Equivalents	102
§4.11(A) Reverse Equivalents	104
§4.11(B) Unexpected Results	105
\$4.12 Conclusion: Future Directions for Biotechnology Patent Law	105
§4.12(A) International Patent Issues	106
§4.12(B) Life-Saving Pharmaceuticals in Developing Countries	106
§4.12(C) Scientific Progress, the Human Genome Initiative,	
and Changes in Patent Law	106
Chapter 5 Biotechnology Business Strategy	109
\$5.0 Introduction (Including a Brief History of Biotech Business	
Models)	109
\$5.1 Strategic Planning for the New "Hybrid" Biotechnology	112
§5.1(A) The Role of Markets in Strategic Planning	113
\$5.1(B) Minimizing Risk in Clinical Development: Animal	
Models, Clinical Trial Costs (Sizes and Duration), Clear	
Pathways, and Unmet Medical Needs	115
\$5.2 Integrating Regulatory Strategy and Market Issues	119
\$5.3 Financing Biopharmaceutical Development: Considerations	
and Strategy	120
\$5.4 Summary: The Multiple Strands of a Biotech Business Plan	125
Chapter 6 Financing the Process of Development	129
\$6.0 Introduction	129
\$6.1 A Brief Introduction to Corporations and Securities: (The	
MBAs and Lawyers May Wish to Skip This Section)	130
\$6.2 Selling Securities: Caveat Vendor	132
\$6.3 In the Beginning: Is There an Angel in the House?	132
\$6.4 Venture Capital Financing Issues	134
§6.4(A) Due Diligence	135
§6.4(B) Valuation of the Investment (and the Company)	137
§6.4(C) Capital Structure: Authorized Shares	139
§6.4(D) Stock Options Plans	140
§6.4(E) Stages of Venture Capital Investment	141
§6.4(F) Anti-Dilution	142

§6.5 Beyond the First Round: Licensing and Corporate Strategic	
Alliances	142
§6.5(A) The Framework for a Strategic Alliance	144
§6.5(B) Timing of Alliances and the Impact on Valuation	145
§6.5(C) Foreign Partnerships	148
\$6.6 Introduction to the Public Offering	149
\$6.6(A) The Decision to Go Public	149
§6.6(B) Preparing the Public Offering: The Letter of Intent	151
\$6.6(C) Going Public: The Team	151
§6.6(D) Going Public: Due Diligence	152
§6.6(E) Going Public: Filing the Registration Statement	153
\$6.6(F) Going Public: The Effective Date and the Closing Date	154
§6.6(G) Going Public: The Quiet Period	155
\$6.6(H) Going Public: Lock-Up Periods and the PSLRA "Safe Harbor"	156
\$6.7 Conclusion: Biotechnology Finance as a Four-Dimensional	
Rubik's Cube	158
Chapter 7 An Overview of the Regulation of Biotechnology	161
\$7.0 Introduction	161
\$7.1 History of the Regulation of Genetic Engineering	163
§7.2 Regulation Under the NIH Recombinant DNA Advisory	1.64
Committee Guidelines (NIH-RAC)	164
\$/.3 The FDA and Human Health Care Applications of	1.00
Biotechnology	168
§7.3(A) The FDA Approval of Human Therapeutics and	1.00
Diagnostics (7.2) The FDA and New Animal Dress	168
\$7.5(B) The FDA and New Animal Drugs	1/1
\$/.4 The EPA and Agricultural Biotechnology	1/2
§7.4(A) EPA's FIFRA Procedures for Field Testing Genetically	172
Engineered Organisms $67.4(\text{P})$ The EIEPA Step devider the Approximation function	173
\$7.4(B) The FIFRA Standard for the Approval of Pesticides	174
\$7.5 EPAS Regulation of Non-Agricultural Biotechnology—15CA	1/5
§7.5(A) ISCAS Scope, Procedures, and Standards	170
\$7.5(B) Requirement of a Premanufacture Notice (PMIN)	1//
57.6 (A) USDA's Degulation of Vatarinary Piological Products	1/ð
yr.u(A) USDAS Regulation of veterinary biological Products—	170
VOIA	1/9

§7.6(B) USDA's Regulation of Genetically Engineered	
Microorganisms and Plants—PPA	181
§7.6(C) The Scope, Standards, and Procedures of the PPA	182
§7.7 The Regulation of Food Products from Genetically Engineered	
Plants	183
§7.7(A) Adulterated: The First Concept of Food Safety	183
§7.7(B) Food Additive: Added Substances That Do Not	
Adulterate	184
\$7.7(C) Generally Recognized as Safe (Between Additive and	
Adulteration)	185
§7.7(D) Foods Derived from New Plant Varieties Created by	
Genetic Engineering—the FDA Statement of Policy	187
§7.7(E) Food Plants Engineered to Produce a Biopesticide or	
Treated with a Biotechnology Derived Biopesticide	192
\$7.7(F) Conclusion: Risk Perception and Food Biotechnology	193
Chapter 8 Special Regulatory Issues—FDA Regulation of Drugs,	
Biologics, and Devices	197
\$8.0 Introduction	197
§8.1 Regulatory Strategy: An Introductory Example	199
\$8.2 The FDA Structure and Statutory Authority for Drugs and	
Biologics (With a Brief Word about Devices)	200
§8.2(A) A Brief Excursion into the Distinction between Drugs	
and Biologics	201
§8.2(B) A Brief Word about Devices	205
§8.3 Stages of Drug Development and Drug Development Strategy	206
§8.3(A) From Preclinical Decision Making to NDA	209
§8.3(A)(1) The Five Key Parameters of Strategic Success:	
FDA Approval	210
§8.3(A)(2) Optimal Indication	210
§8.3(A)(3) The Shortest Possible Time	210
§8.3(A)(4) Conserving Scarce Resources: Time and Money	210
§8.3(A)(5) Planning for Reimbursement	211
§8.3(B) Strategic Issues in the Development Process and the	
Terms of Success	211
§8.3(B)(1) The Preclinical Development Process and the	
Optimal Indication	212
§8.3(B)(2) Conserving Time and Money	214
§8.3(B)(3) Planning for Reimbursement	216

§8.3(C) Drug Development Strategy: Learning from the	
Mistakes of Previous Companies	216
\$8.3(D) Conclusion: Planning the Clinical Development of a	
New Therapeutic Begins at the Early Preclinical Stage	220
§8.4 A Practical Guide to Clinical Trials and the NDA	220
§8.4(A) The New Drug Application or Product License	
Application	222
§8.4(B) Beyond Approval: Post-Marketing Issues	225
§8.4(C) Reporting Adverse Drug Experiences (ADEs)	226
\$8.5 Accelerated Approval and Early Access to Unapproved Drugs:	
Drugs for Severely Debilitating and Life Threatening Illnesses	227
§8.5(A) Fast Track, Accelerated Approval, and Priority Review	227
§8.5(B) Early Access to Experimental Drugs	229
§8.6 Product Exclusivity and the FDA: Orphan Drugs, Patent	
Term Extension, and Pediatric Study Extensions	231
§8.6(A) The Orphan Drug Act	231
§8.6(B) Patent Term Restoration	233
§8.6(C) Pediatric Study Patent Extensions	235
§8.7 "Generic Biopharmaceuticals"	237
§8.8 Advertising and Promoting Prescription Drugs (Herein Also a	
Brief Word about Dietary Supplements-DSHEA)	241
§8.8(A) The Legal Background of the FDA's Marketing and	
Promotion Regulation	241
§8.8(B) Marketing to Physicians and Formulary Committees	243
§8.8(C) Direct-to-Consumer (DTC) Advertising in Print and by	
Electronic Media	245
§8.9 DSHEA—Anything Goes (Almost)	247
§8.10 Postscript: International Pharmaceutical Regulation and	
Harmonization	253
Chapter 9 Ethical Perspectives on New Ethical Dilemmas for	
Biotechnology	257
\$9.0 Introduction	257
\$9.1 The Scientific Advances and Ethical Challenges to	
Biotechnology Research and Development	258
\$9.2 Ethical Frameworks and A Theory of Justice	260
\$9.3 Applying the Frameworks to the Problems	263
\$9.3(A) Bioterrorism and Restraints on Research and	
Publication	263

\$9.3(B) Balancing Incentives for Pharmaceutical Innovation	
against Affordability and Access for Persons with	
Medical Needs	265
§9.3(C) Echazabal and Workplace Genetic Testing: The Law	
and Ethics of Protecting Workers against Risks	266
\$9.3(C)(1) The Legality of Protecting Workers against Risks	
to Their Own Health	267
§9.3(C)(2) A Theory of Justice and Workplace Genetic	
Testing	269
\$9.4 Embryonic Stem Cell Research	274
Chapter 10 Special Regulatory Issues: Human Gene Therapy	277
\$10.0 Introduction to Gene Therapy: At the Edge of a New Era in	
Medicine	277
\$10.1 What is Gene Therapy?	278
\$10.1(A) Candidate Diseases for Gene Therapy	280
\$10.1(B) Selecting Appropriate Target Cells	281
\$10.1(C) Methods for Delivering Therapeutic Genetic Material	281
\$10.2 Risks of Gene Therapy	284
\$10.2(A) The Risk of Producing Replication-Competent Viruses	285
\$10.2(B) The Pathogenicity of Viral Vectors	286
\$10.2(C) Summary: Risks of Gene Therapy	288
\$10.3 The Regulatory Framework for Gene Therapy	289
\$10.3(A) Notification of the NIH-RAC	289
\$10.3(B) Appendix M and the NIH's Principal Concerns	290
\$10.3(C) FDA Review of Gene Therapy Protocols	291
\$10.4 The Ethical Debate over Gene Therapy	292
\$10.4(A) General Limitations on Somatic Cell Gene Therapy	293
\$10.4(B) Ethical Issues Surrounding Germ-Line Gene Therapy	294
\$10.4(C) The Ethical Problem of Access to Gene Therapy	297
\$10.5 Conclusion	298
Chapter 11 Liability for Biotechnology Products	299
\$11.0 Introduction	299
\$11.1 A Basic Overview of Negligence	300
\$11.1(A) Violation of a Statute or Regulation as Negligence Per Se	301
\$11.1(B) The Relevance of Custom to Negligence	302
\$11.1(C) General Evidence of Reasonable Care	303
\$11.2 An Introduction to Strict Product Liability	304

\$11.2(A) Defective Condition Unreasonably Dangerous	305
§11.2(B) Manufacturing Defect	305
\$11.2(C) Design Defect	306
\$11.2(D) Failure to Warn	308
\$11.2(E) Preemption of Liability by FDA Approval:	
A Complicated Tale	309
\$11.3 Legal Cause: A Problem in Both Negligence and Strict	
Liability	311
\$11.3(A) Expert Testimony in Product Liability Cases	312
\$11.4 The National Vaccine Injury Compensation Program:	
42 U.S.C. §300aa-1 et seq. (2006): One Answer to the	
Causation Conundrum	315
\$11.5 Drugs, Vaccines, and Other Human Therapeutics as	
Unavoidably Unsafe: Restatement (Second) of Torts	
\$402A Comment k	318
\$11.6 Restatement of Torts (Third) and Product Liability Reform	320
\$11.7 Liability for Biotechnology in Other Contexts: Beyond Product	
Liability for Drugs, Vaccines, and Medical Devices	322
\$11.7(A) Liability in the Workplace	322
\$11.7(B) Liability for Biotechnology Pesticides	327
\$11.7(C) Liability for Food Products Produced by Biotechnology	328
\$11.7(D) Liability for Other Biotechnology Products in Industry	
and the Environment	331
\$11.8 Conclusion	332
Index	333

TABLE OF CASES

"Agent Orange" Product Liability Litigation, 312 Amgen v. Chugai, 93 Andrulonis v. U.S., 322 Ariad Pharms., Inc. v. Eli Lilly & Co., 101 Bates v. Dow Agrosciences, 327 Brown v. Superior Court, 308, 332 Burr v. Duryee, 102 Chevron USA, Inc. v. Echazabal, 267 Daubert v. Merrell Dow Pharmaceuticals, Inc., 313 Diamond v. Chakrabarty, 46, 73 Enzo Biochem v. GenProbe, 90 Escola v. Coca-Cola Bottling Co. of Fresno, 305 Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co., 103 Frye v. United States, 311 Genentech, Inc. v. Wellcome Found. Ltd., F.3d 1555 (Fed. Cir. 1994), 87 Graham v. John Deere Co., 88 Graver Tank, 102, 104 Harvard College v. Canada, 78 Hilton Davis Chem. Co. v. Warner Jenkinson Co, Inc., 103 Hormone Research Foundation, Inc. v. Genentech, 102 Hybritech Inc. v. Monoclonal Antibodies Inc., 88 In Re Allen, 77 In re Bergy, 79 In re Dillon, 919 F.2d 688 at 692, 105 In re Graeme I. Bell, 85

In re Hogan, 104-105 In re Mayne, 105 In re Thomas F. Deuel, 85 Johns Hopkins v. Cellpro, 92 Jurgens v. McKasy, 102 Loctite Corp v. Ultraseal Ltd., 102 Medtronic Inc., v. Lohr, 310 Mexicali Rose v. Superior Ct., 329 Moore v. Regents of University of California, 95 NVE Inc. v. Thompson, 436 F.3d 182 (3rd Cir. 2006), 252 Papas v. Upjohn, 327 Parke Davis & Co. v. H.K. Mulford & Co., 72 Penwalt Corp. v. Durand-Wayland Inc., 104Pharmanex v. Shalala, 221 F.3d 1151 (10th Cir. 2000), 250 Platzer v. Sloan-Kettering, 50 Richardson v. Richardson-Merrell, 312 Sanitary Refrigerator, 102 Scripps Clinic & Research Found. v. Genentech Inc., 104 The T.J. Hooper, 303 Thompson v. Western States Medical Center, 535 U.S. 357 (2002), 242 Warner-Jenkinson Co., Inc. v. Hilton Davis Chem. Co., 103 Washington Legal Foundation v. Henney, 202 F.3d 331, (D.C. Cir. 2000), 242 Yong Cha Hong v. Marriot Corp., 329

ACKNOWLEDGMENTS

A great many people have helped me with this book in different ways. There are too many to list them all, but I shall list several in different categories.

First are those who specifically lent their time to reading drafts of this book and offering helpful suggestions. These include John Mendeloff of the University of Pittsburgh; Dale Busch, former General Counsel of the Salk Institute for Biological Studies; Jasmin Patel of Novartis; Jacob Handy of Morrison and Foerster; and, my wife Karen.

Second, there are many scientists who have contributed to my efforts to understand the science of biotechnology. These include the late Clifford Grobstein, of the University of California, San Diego (UCSD), who was my first guide to the field of biotechnology policy; Don Helinski, of UCSD, who gave me the opportunity to work and learn at UCSD's Center for Molecular Genetics; Ron Brown, a cofounder of Syntro and former CEO of Octamer, Inc., who first introduced me to the extraordinary world of biotechnology as a business; and, the late John O'Brien, of UCSD, who extended to me the great privilege of working with him for several years in the development and commercialization of his science. Mario Bourdon of the La Jolla Institute for Molecular Medicine provided me with the opportunity to learn about the world of nonprofit biomedical research during my years as a member of the Board of that Institute. Ami Loewenstein of Technion's Dimotech and the faculties of Medicine and Biology at the Technion-Israel Institute of Technology in Haifa also were very generous in allowing me to work and learn about their science, research, and efforts in technology transfer

Third, there are those who have helped me develop as a lawyer and legal scholar. John Cribbet, the former Dean of the University of Illinois College of Law, strove to impart the importance of "the big picture" to generations of law students. Dean Cribbet, credit for my effort to see the big picture in this book is yours. The late Dean Albert Sachs, of Harvard Law School, helped me understand the value of legal scholarship. My colleague John Noyes has been a sounding board for my ideas for over twenty years. Dean Steven Smith of California Western School of Law has encouraged me in all of my scholarship and particularly in my efforts to complete this book.

I have been very fortunate to teach Biotechnology Law to many wonderful students over the past decade or so and I owe much to them for their contributions to my class, which have helped expand my understanding of the issues and my efforts to communicate both technical and legal material. To name just a few I would mention: Lisa Haile of DLA Piper Rudnick Gray Cary; Christine Gritzmacher of GenProbe; Chris Dayton of BiogenIdec; Jayshree Gerken of Fish and Richardson, and, Rena Patel of Bristol Meyers Squibb.

My sons Matthew and Nathaniel have been very patient and supportive during the many hours I was working on this book that I otherwise would have spent with them. Biotechnology is about the science of life. You have taught me about its meaning.

I owe more than I can say to my Editor-For-Life and wife, Karen Bohrer, without whose help and support I could never have finished this project.

Thanks.

Bob Bohrer San Diego, California August 2006