The Renewable Energy Reader
The Renewable Energy Reader

K.K. DuVivier
Professor of Law
University of Denver
Sturm College of Law

Carolina Academic Press
Durham, North Carolina
To Marjorie and Ned for making everything possible;
Lance for your love and support; and
Alice and Emmett who make me proud and inspire me to work for a better tomorrow.
Summary of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A. Catalysts for Change</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>B. The Rise of Renewables</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Solar</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>A. History & Context</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>B. Solar Access under the Common Law</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>C. Government Involvement</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>D. Trees and Distributed Solar Power</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>Wind</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>A. History & Context</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>B. Property Rights & Wind Severance</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>C. Wind v. Wildlife</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>D. Wind v. Humans</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>E. Wind v. Other Resources</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>F. Local Controls</td>
<td>119</td>
</tr>
<tr>
<td>4</td>
<td>Hydropower</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>A. How Hydropower Works</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>B. Early State Control and Property Issues</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>C. Federal Control of Hydropower Dams</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>D. Environmental Balance</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>E. Future Development of Hydropower Resources</td>
<td>164</td>
</tr>
<tr>
<td>5</td>
<td>Biomass</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>A. Sources of Biomass Energy</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>B. Efficiency and Energy Return on Energy Invested (EROEI)</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>C. Environmental Issues</td>
<td>205</td>
</tr>
<tr>
<td>6</td>
<td>Geothermal</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>A. History</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>B. Legal Definitions of Geothermal Resources</td>
<td>228</td>
</tr>
</tbody>
</table>
SUMMARY OF CONTENTS

C. Ownership Issues 237
D. Acquisition Process 257
E. Environmental Concerns 260
F. Additional Considerations 265

Chapter 7 · Energy Efficiency 271
A. History 272
B. Efficiency Overview 278
C. Specific Solutions 282

Chapter 8 · Renewables on Federal Lands 325
A. Terrestrial Wind and Solar 325
B. Offshore Wind and Wave Power 334
C. Renewable Energy Development and NEPA 354
D. Environmental Concerns 370

Chapter 9 · Native Nations and Energy Justice 387
A. Alternative Energy Development on Tribal Lands 387
B. Tribal Input on Development Outside of Reservation Lands 397
C. Energy Justice 411
Contents

Summary of Contents vii
Table of Figures xvii
Acknowledgments xix

Chapter 1 · Introduction 3
A. Catalysts for Change 3
1. Higher Prices as World Competition Increases Demand for Depleting Reserves 5
2. Geopolitics and Security 9
3. Environmental Concerns 10
 (a) Petroleum 10
 (b) Coal 10
 (c) Natural Gas 12
 (d) Nuclear Power 12
B. The Rise of Renewables 13

Chapter 2 · Solar 17
A. History & Context 21
 Sara C. Bronin, Solar Rights 21
 Notes and Questions 23
B. Solar Access under the Common Law 24
 1. Contract Approaches 24
 Sara C. Bronin, Solar Rights 24
 Notes and Questions 27
 2. Tort Approaches 28
 Sara C. Bronin, Solar Rights 28
 Notes and Questions 32
 3. Prah v. Maretti 32
 Prah v. Maretti, 321 N.W.2d 182 (Wis. 1982) 33
 Notes and Questions 40
C. Government Involvement 41
 1. Reasons for Government Involvement and at Which Level 42
Troy A. Rule, Shadows on the Cathedral: Solar Access Laws in a Different Light
Notes and Questions
2. Current Systems
a. Permit-Based Systems
Sara C. Bronin, Solar Rights
Notes and Questions
b. Zoning
Sara C. Bronin, Solar Rights
Notes and Questions
c. Legislative Solar Easements
Sara C. Bronin, Solar Rights
Notes and Questions
3. Deciding What to Protect
Troy A. Rule, Shadows on the Cathedral: Solar Access Laws in a Different Light
Notes and Questions
4. Spectrum of Strategies
a. Legislative Cheerleading
Notes and Questions
b. Middle-Ground Protections
Notes and Questions
Notes and Questions
c. Strongest Protections
Boulder Revised Code Section 9-9-17 Solar Access
Notes and Questions
Troy A. Rule, Shadows on the Cathedral: Solar Access Laws in a Different Light
Notes and Questions
D. Trees and Distributed Solar Power
Ordinance — Gainesville, Florida
Ch. 30 — Land Development Code
Ordinance — Ashland, Oregon
Ch. 18 — Land Use
Notes and Questions

Chapter 3 · Wind
A. History & Context
CONTENTS

Carol Sue Tombari, Power of the People: America’s New Electricity Choices 76
Ronald H. Rosenberg, Diversifying America’s Energy Future: The Future of Renewable Wind Power 77
Notes and Questions 82
B. Property Rights & Wind Severance 83
South Dakota Codified Laws § 43-13-19, Severance of Wind Energy Rights Limited 87
Notes and Questions 87
C. Wind v. Wildlife 89
1. Background 89
 Notes and Questions 97
D. Wind v. Humans 98
1. Background 98
 Bent Ole Gram Mortensen, International Experiences of Wind Energy Development 99
 Notes and Questions 100
2. Rankin v. FPL Energy, LLC 100
 Rankin v. FPL Energy, LLC, 266 S.W.3d 506 (Tex. App. 2008), pet. denied 101
 Notes and Questions 104
E. Wind v. Other Resources 105
K.K. DuVivier and Roderick E. Wetsel, Jousting at Windmills: When Wind Power Development Collides with Oil, Gas, and Mineral Development 105
Notes and Questions 112
K.K. DuVivier and Roderick E. Wetsel, Jousting at Windmills: When Wind Power Development Collides with Oil, Gas, and Mineral Development 113
Notes and Questions 118
F. Local Controls 119
Zimmerman v. Board of County Commissioners of Wabaunsee County, 218 P.3d 400 (Kan. 2009) 119
Notes and Questions 123

Chapter 4 · Hydropower 125
A. How Hydropower Works 127
 U.S. Dep’t. of Interior, Bureau of Reclamation, Power Resources Office, Reclamation: Managing Water in the West — Hydroelectric Power 127
 Notes and Questions 129
B. Early State Control and Property Issues 130
1. History 130
 Sarah C. Richardson, Note, The Changing Political Landscape of Hydropower Project Relicensing 130
2. Bean v. Central Maine Power Co. 132
C. Federal Control of Hydropower Dams

1. Rise of Federal Control

 Sarah C. Richardson, Note, The Changing Political Landscape of Hydropower Project Relicensing
 Federal Power Act, 16 U.S.C. § 797
 Colorado River Basin Project Act, 43 U.S.C. § 1501

2. Remaining State and Local Influence

 Lawrence Susskind, Alejandro E. Camacho & Todd Schenk,
 Collaborative Planning and Adaptive Management in Glen Canyon: A Cautionary Tale

D. Environmental Balance

1. Relicensing Procedures

2. Dam Decommissioning

 Sarah C. Richardson, Note, The Changing Political Landscape of Hydropower Project Relicensing

E. Future Development of Hydropower Resources

U.S. Dep’t of Energy, Energy Efficiency and Renewable Energy Wind and Water Program—Technologies

Chapter 5 · Biomass

A. Sources of Biomass Energy

1. Feedstocks

 Arnold W. Reitze, Jr., Biofuels — Snake Oil for the Twenty-First Century

2. Waste to Energy

 Steven Ferrey, Symposium, Smart Brownfield Redevelopment for the 21st Century: Converting Brownfield Environmental Negatives into Energy Positives

3. History & Future Focus of Biofuels Research

B. Efficiency and Energy Return on Energy Invested (EROEI)

L. Leon Geyer, Phillip Chong, & Bill Hxue, Ethanol, Biomass, Biofuels and Energy: A Profile and Overview
 Arnold W. Reitze, Jr., Biofuels — Snake Oil for the Twenty-First Century
Chapter 6 · Geothermal

A. History

1. Geology & Geothermal Systems
 Notes and Questions

2. The Geysers
 Notes and Questions

B. Legal Definitions of Geothermal Resources

1. Hydrothermal & Direct-Use
 Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It's Not Just Steam: Geothermal Resources and the Impacts on Thermophile Biodiversity
 Notes and Questions

2. Geothermal Heat Pumps
 Notes and Questions

C. Ownership Issues

1. Background
 Kurt E. Seel, Legal Barriers to Geothermal Development
 Notes and Questions

2. Geothermal Ownership Cases
 United States v. Union Oil Co., 549 F.2d 1271 (9th Cir. 1977)
 Notes and Questions
Geothermal Kinetics v. Union Oil Co., 75 Cal. App. 3d 56
(Cal. Ct. App. 1977) 252
Notes and Questions 256
D. Acquisition Process 257
Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It’s Not
Just Steam: Geothermal Resources and the Impacts on
Thermophile Biodiversity 257
Notes and Questions 260
E. Environmental Concerns 260
Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It’s Not
Just Steam: Geothermal Resources and the Impacts on
Thermophile Biodiversity 261
Kurt E. Seel, Legal Barriers to Geothermal Development 263
Notes and Questions 263
Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It’s Not
Just Steam: Geothermal Resources and the Impacts on
Thermophile Biodiversity 264
Notes and Questions 265
F. Additional Considerations 265
1. Induced Seismicity 265
Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It’s Not
Just Steam: Geothermal Resources and the Impacts on
Thermophile Biodiversity 265
Notes and Questions 266
2. Conflict with Cultural Resources or Native American Sacred Sites 267
Kurt E. Seel, Legal Barriers to Geothermal Development 267
Notes and Questions 268
3. Competing Interests 268
Donald J. Kochan & Tiffany Grant, In the Heat of the Law, It’s Not
Just Steam: Geothermal Resources and the Impacts on
Thermophile Biodiversity 268
Notes and Questions 270
Chapter 7 · Energy Efficiency 271
A. History 272
Sidney A. Shapiro & Joseph P. Tomain, Rethinking Reform of
Electricity Markets 272
James W. Moeller, Electric Demand-Side Management Under Federal Law 276
Notes and Questions 277
B. Efficiency Overview 278
Edward H. Comer, Transforming the Role of Energy Efficiency 278
Notes and Questions 282
C. Specific Solutions 282
1. Virtual Power Plants 283
Carol Sue Tombari, Power of the People: America’s New Electricity
Choices 283
Notes and Questions 284
2. Green Building Codes 285
CONTENTS

Carol Sue Tombari, Power of the People: America's New Electricity Choices 285
Notes and Questions 289
b. Federalism and Other Legal Concerns 290
Shari Shapiro, Who Should Regulate? Federalism and Conflict in Regulation of Green Buildings 291
Notes and Questions 297
3. Smart Grid 299
a. Smart Grid & Distributed Generation 299
Carol Sue Tombari, Power of the People: America's New Electricity Choices 299
Sidney A. Shapiro & Joseph P. Tomain, Rethinking Reform of Electricity Markets 302
The Smart Grid: An Introduction 303
Notes and Questions 306
b. Smart Grid & Privacy 307
Kevin L. Doran, Privacy and Smart Grid: When Progress and Privacy Collide 307
Elias L. Quinn, Smart Metering & Privacy: Existing Law and Competing Policies 310
Notes and Questions 313
4. Energy Efficient Technologies 313
William A. Tanenbaum, Practical Steps to Contract for Energy-Efficient Data Centers and IT Operations 315
Notes and Questions 320
5. Behavioral Changes 320
Hope M. Babcock, Responsible Environmental Behavior, Energy Conservation, and Compact Fluorescent Bulbs: You Can Lead a Horse to Water but Can You Make it Drink? 321
Notes and Questions 322
Chapter 8 · Renewables on Federal Lands 325
A. Terrestrial Wind and Solar 325
Notes and Questions 334
B. Offshore Wind and Wave Power 334
1. Offshore Wind 335
a. The Offshore Wind Leasing Process 336
Joseph J. Kalo & Lisa C. Schiavinato, Wind Over North Carolina Waters: The State's Preparedness to Address Offshore and Coastal Water-Based Wind Energy Projects 336
Notes and Questions 342
b. Cape Wind 343
Alliance to Protect Nantucket Sound, Inc. v. U.S. Dep't of the Army, 398 F.3d 105 (1st Cir. 2005) 344
Notes and Questions 347
2. Ocean Hydrokinetics 349
Notes and Questions 352
C. Renewable Energy Development and NEPA
 1. Programmatic Environmental Impact Statements for Terrestrial Wind and Solar
 Notes and Questions 357
 2. Leveling the Playing Field
 Irma S. Russell, Streamlining NEPA to Combat Global Climate Change: Heresy or Necessity? 358
 Notes and Questions 363
 3. Balancing of Equities
 Notes and Questions 370
D. Environmental Concerns
 Robert Glennon & Andrew M. Reeves, Solar Energy’s Cloudy Future 370
 Notes and Questions 383

Chapter 9 · Native Nations and Energy Justice
A. Alternative Energy Development on Tribal Lands
 Elizabeth Ann Kronk, Alternative Energy Development in Indian Country: Lighting the Way for the Seventh Generation 387
 Robert Glennon & Andrew M. Reeves, Solar Energy’s Cloudy Future 395
 Notes and Questions 396
B. Tribal Input on Development Outside of Reservation Lands
 1. Mechanisms for Protecting Native Values on Public Lands
 Martin Nie, The Use of Co-Management and Protected Land-Use Designations to Protect Tribal Cultural Resources and Reserved Treaty Rights on Federal Lands 397
 Notes and Questions 403
 2. Quechan Tribe v. U.S. Dep’t of Interior
 Quechan Tribe of Fort Yuma Indian Reservation v. U.S. Dep’t of Interior, 755 F. Supp. 2d 1104 (S.D. Cal. 2010) 404
 Notes and Questions 410
C. Energy Justice
 Randall S. Abate, Public Nuisance Suits for the Climate Justice Movement: The Right Thing and the Right Time 412
 Alice Kaswan, Greening the Grid and Climate Justice 413
 Lakshman Guruswamy, Energy Justice and Sustainable Development 414
 Notes and Questions 417

Index 419
Table of Figures

<p>| Figure 1.1 | Energy Basics | 4 |
| Figure 1.2 | World primary energy consumption | 5 |
| Figure 1.3 | Growth in world energy demand and consumption | 7 |
| Figure 1.4 | Levelized Cost of Energy (LCOE) of renewable electricity by technology | 8 |
| Figure 1.5 | U.S. energy production and consumption | 13 |
| Figure 1.6 | U.S. renewable electricity capacity and generation | 14 |
| Figure 1.7 | Top states for renewable electricity installed nameplate capacity | 15 |
| Figure 1.8 | New electricity capacity added worldwide | 15 |
| Figure 2.1 | A fundamental look at energy reserves of the planet | 17 |
| Figure 2.2 | Common solar technologies | 18 |
| Figure 2.3 | Growth of solar PV in the U.S. | 20 |
| Figure 2.4 | Depiction of solar skyspace | 25 |
| Figure 2.5 | Impact of setbacks and rooflines on solar access | 49 |
| Figure 2.6 | Solar Skyspace B | 51 |
| Figure 2.7 | Spectrum of legal strategies for promoting solar power | 54 |
| Figure 2.8 | Depiction of tree heights for solar access | 69 |
| Figure 3.1 | U.S. total installed wind energy nameplate capacity and generation | 74 |
| Figure 3.2 | Wind power types | 75 |
| Figure 3.3 | Horns Rev 1 Windfarm | 88 |
| Figure 3.4 | Turbines in the San Gorgonio region of California | 91 |
| Figure 3.5 | U.S. wind resource potential | 106 |
| Figure 3.6 | Subsurface imprint of wind farms | 108 |
| Figure 4.1 | U.S. electricity generation by source (%) 2000–2009 | 125 |
| Figure 4.2 | Dams by primary purpose from NID report | 126 |
| Figure 4.3 | Traditional dam and turbine | 129 |
| Figure 4.4 | History of hydropower | 131 |
| Figure 4.5 | Dams by completion date | 141 |
| Figure 4.6 | Dams by owner type | 146 |
| Figure 4.7 | Fish ladder at Bonneville Dam on the Columbia River | 162 |
| Figure 4.8 | Major components of a small hydro system | 165 |
| Figure 4.9 | Pumped-storage hydropower | 167 |
| Figure 5.1 | Renewable electricity as a percentage of total generation | 172 |
| Figure 5.2 | U.S. renewable generation by technology | 172 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>U.S. corn ethanol production and price trends</td>
<td>173</td>
</tr>
<tr>
<td>5.4</td>
<td>Range of biofuels research</td>
<td>174</td>
</tr>
<tr>
<td>5.5</td>
<td>Biofuels conversion processes</td>
<td>175</td>
</tr>
<tr>
<td>5.6</td>
<td>Renewable Portfolio Standards map</td>
<td>187</td>
</tr>
<tr>
<td>5.7</td>
<td>Ethanol is the most mature biofuel technology</td>
<td>193</td>
</tr>
<tr>
<td>5.8</td>
<td>Conventional v. combined heat and power (CHP) generation</td>
<td>202</td>
</tr>
<tr>
<td>5.9</td>
<td>Biomass One plant in Oregon</td>
<td>205</td>
</tr>
<tr>
<td>6.1</td>
<td>Geothermal resource of the United States</td>
<td>220</td>
</tr>
<tr>
<td>6.2</td>
<td>Map of tectonic plate boundaries</td>
<td>223</td>
</tr>
<tr>
<td>6.3</td>
<td>Geothermal systems</td>
<td>225</td>
</tr>
<tr>
<td>6.4</td>
<td>Three different hydrothermal systems</td>
<td>231</td>
</tr>
<tr>
<td>6.5</td>
<td>Hot dry rock system</td>
<td>232</td>
</tr>
<tr>
<td>6.6</td>
<td>The Springs Resort and Spa, Pagosa Springs, Colorado</td>
<td>234</td>
</tr>
<tr>
<td>6.7</td>
<td>Geothermal heat pumps</td>
<td>236</td>
</tr>
<tr>
<td>7.1</td>
<td>Efficiency flow charts</td>
<td>273</td>
</tr>
<tr>
<td>7.2</td>
<td>Electricity demand profile for a typical U.S. service area on a hot summer day</td>
<td>276</td>
</tr>
<tr>
<td>7.3</td>
<td>Annual per capita energy use worldwide</td>
<td>279</td>
</tr>
<tr>
<td>7.4</td>
<td>EnergySmart home scale</td>
<td>290</td>
</tr>
<tr>
<td>7.5</td>
<td>Residential state energy codes status map</td>
<td>296</td>
</tr>
<tr>
<td>7.6</td>
<td>Building Codes Assistance Project—code universe</td>
<td>298</td>
</tr>
<tr>
<td>7.7</td>
<td>Smart grid</td>
<td>302</td>
</tr>
<tr>
<td>7.8</td>
<td>Household electricity demand profile recorded on a one-minute time base</td>
<td>311</td>
</tr>
<tr>
<td>7.9</td>
<td>U.S. residential electricity use</td>
<td>314</td>
</tr>
<tr>
<td>8.1</td>
<td>CSP solar resources on public lands</td>
<td>333</td>
</tr>
<tr>
<td>8.2</td>
<td>U.S. offshore wind resources</td>
<td>335</td>
</tr>
<tr>
<td>8.3</td>
<td>Proposed U.S. offshore wind projects and capacity showing projects with significant progress</td>
<td>344</td>
</tr>
<tr>
<td>8.4</td>
<td>Key statutes and agencies involved in offshore wind permitting</td>
<td>348</td>
</tr>
<tr>
<td>8.5</td>
<td>Four primary types of wave energy conversion</td>
<td>349</td>
</tr>
<tr>
<td>8.6</td>
<td>Marine and hydrokinetic technologies</td>
<td>351</td>
</tr>
<tr>
<td>8.6</td>
<td>Marine and hydrokinetic technologies continued</td>
<td>352</td>
</tr>
<tr>
<td>8.7</td>
<td>Issued hydrokinetic preliminary permits</td>
<td>353</td>
</tr>
<tr>
<td>8.8</td>
<td>The four primary CSP technologies</td>
<td>373</td>
</tr>
<tr>
<td>8.9</td>
<td>Concentrating solar thermal technologies</td>
<td>374</td>
</tr>
<tr>
<td>8.10</td>
<td>Summary of water and land use for energy production</td>
<td>384</td>
</tr>
</tbody>
</table>
Acknowledgments

This book is truly a collaborative work, and I am deeply grateful to the following people for their input. This book would not be nearly as rich without their help.

Bob Noun, Carol Tumbani, John Ashworth, Robin Newmark, James Bosch, Michele Kubik, Donna Heimiller, Sarah Barba, Nancy Prosser-Stovall, etc. from the National Renewable Energy Laboratory for all of their help with content and graphics. Also to the following for their special assistance: Mark Safty and Elizabeth A. Mitchell from Holland & Hart; Connie Rogers from Davis Graham & Stahss; Rebecca W. Watson from Welborn, Sullivan, Meck & Tooley, P.C.; Randy Stearnes from Tacoma Public Utilities; Matt Futch from IBM (formerly from the Colorado Governor’s Energy Office); Catherine M. H. Keske from Colorado State University; and Andrew B. Reid from Springer and Steinberg.

My research assistants Dustin Charapata, Chelsea Huffman, Megan Moriarty, Sarah Stout, and Thomas Scott for your countless hours of work.

To Nicole Lyells, Stacy Bowers, Diane Burkhardt, Joan Policastro, Caryl Shipley, for formatting, copyright permissions, and research assistance.

An additional thank you is due to each of the following as well for their help along the way: Don C. Smith, Jacqueline Weaver, Jim and Jean Buck, Chuck and Kate DuVivier, Joe DuVivier and Ken White, Laurent Meillon, Becky English, Don Tressler, Gerry Todd, Robert Youngberg, Steve Stevens, John A. Herrick, Sarah Quinn, Alan Gilbert, Becky Bye, Susan Osborne, Alan Boles, Theresa I. Corless, Gale Norton, Jack Sinclair, Ron Binz, Suedeen Kelly, Greg Ching, Nancy Laplaca, Ron Lehr, Carol E. Lyons, Mike Zimmer, Roger Feldman, Henry A. Signore, Jerry Sherk, Luke Danielson, Matt Larson, Rod Wetsel, Gordon Draper, Bruce Finley, Matt Baker, Jim Tarpey, Rich Heinemeyer, Mark T. Gran, Ashland City planners, Tim Colton, and Linda Lacy.

The author also gratefully acknowledges the permissions granted by all of the authors, artists, and publishers of the following works reproduced in this book. Unless otherwise indicated, all footnotes from the originals have been excluded for space reasons.

Roger Bedard, D.O.E. Hydrokinetic Workshop, slide 10, 4 Primary Types of Wave Energy Conversion (Oct. 26, 2005). © 2011 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and TOGETHER... SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute. (Reprinted with permission from EPRI).

Kevin L. Doran, Privacy and Smart Grid: When Progress and Privacy Collide, 41 University of Toledo Law Review 909 (2010).

Brian Andrew Fuentes, Impact of setbacks and rooflines on solar access. Image provided courtesy of Fuentesdesign.com.

Alice Kaswan, Greening the Grid and Climate Justice, 39 Environmental Law 1143 (2009).

ACKNOWLEDGMENTS

Mike New, *Major Components of a Hydro System*. Image provided courtesy of Canyon Hydro.

Elias L. Quinn, *Smart Metering and Privacy: Existing Law and Competing Policies*, Framing Document for Colo. PUC High Profile Dkt. No. 091-593EG (Order C09-0878). Mr. Quinn is currently a Trial Attorney for the United States Department of Justice, Environmental Enforcement Division. The views expressed in the excerpt here are the personal views of Mr. Quinn and do not necessarily reflect the views of the Department of Justice.

Chris Van Essen, *Subsurface imprint of windfarms*.